Martin Bright is assistant professor and programme director in the Mathematical Institute of Leiden University.  He received his PhD from the University of Cambridge in 2002.  After positions in Liverpool, Bristol, Warwick and Beirut, he moved to Leiden in 2014.  His research interests are centred around local-global principles and the Brauer–Manin obstruction, including computational aspects.

Valentijn Karemaker is an assistant professor at Utrecht University who joined the Mathematical Institute in 2019, having previously worked in the United States and Sweden. Her research lies in the fields of arithmetic geometry and algebraic number theory and generally focuses on explicit aspects. Currently her research is mostly on arithmetic properties of (supersingular) varieties and Drinfeld modules over finite fields, funded by an NWO Veni grant. Other projects have involved local-global principles for rational points on varieties, arithmetic dynamics, anabelian geometry, and Galois representations. She is committed to increasing diversity and inclusion in mathematics and science, e.g. via Women in Numbers, European Women in Mathematics, and the Utrecht Young Academy.

Ronald van Luijk is a professor of mathematics at Leiden University. Within the field of rational points, Van Luijk’s research focuses on the distribution of rational points on algebraic surfaces, in particular K3 surfaces and del Pezzo surfaces. After doing his master’s at Utrecht University, he received his PhD from the University of California, Berkeley, in 2005. He held positions at CRM (Montreal), MSRI (Berkeley), PIMS (Vancouver), Universidad de los Andes (Bogotá), Warwick University, EPFL (Lausanne), and received an NWO Vidi grant in 2012.

Steffen Müller joined the Bernoulli Institute at the University of Groningen as an assistant professor in 2017, after a postdoc position in Hamburg and a junior professorship in Oldenburg. He obtained his PhD from Bayreuth. Steffen works on explicit methods in arithmetic geometry of curves and abelian varieties, specialising in height functions and p-adic analytic techniques. Much of his recent work has centered on p-adic heights and explicit non-abelian Chabauty, and applications thereof to rational points on modular curves. His research is currently supported by an NWO Vidi grant. In 2016 he was awarded the Selfridge Prize in Algorithmic Number Theory together with Michael Stoll. 

Marta Pieropan is an assistant professor at Utrecht University. She received her PhD from Leibniz University Hannover in 2015, and then held postdoctoral positions at Free University Berlin and at EPFL. Her research focuses on the arithmetic of Fano varieties and log Fano pairs, and on counting techniques for the distribution of rational points over global fields. Her research interests include rationally connected varieties, toric varieties, arithmetic applications of birational geometry and of logarithmic geometry, moduli spaces of stable (log) curves, special subsets of rational points such as Campana points.

Cecília Salgado is an associate professor in the Algebra Group of the Bernoulli Institute at the University of Groningen. After concluding her Ph.D. in Paris VII, she was a postdoctoral researcher at Leiden and Bonn before taking a position at the Federal University of Rio de Janeiro, where she is now also an associate professor. Her research is currently around the arithmetic and geometry of algebraic surfaces, in particular those with fibration structures. She is also interested in manifestations of those in the context of algebraic geometry codes. She strives for a diverse community in mathematics and has been involved in several initiatives as the European editions of Women in Numbers and also the organisation of events in Brazil and more recently in Groningen.